首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10342篇
  免费   1015篇
  国内免费   979篇
化学   7128篇
晶体学   134篇
力学   788篇
综合类   15篇
数学   633篇
物理学   3638篇
  2024年   13篇
  2023年   105篇
  2022年   136篇
  2021年   194篇
  2020年   391篇
  2019年   264篇
  2018年   246篇
  2017年   287篇
  2016年   442篇
  2015年   434篇
  2014年   475篇
  2013年   717篇
  2012年   764篇
  2011年   777篇
  2010年   595篇
  2009年   748篇
  2008年   767篇
  2007年   810篇
  2006年   672篇
  2005年   507篇
  2004年   515篇
  2003年   427篇
  2002年   318篇
  2001年   210篇
  2000年   210篇
  1999年   168篇
  1998年   149篇
  1997年   150篇
  1996年   117篇
  1995年   138篇
  1994年   86篇
  1993年   84篇
  1992年   67篇
  1991年   67篇
  1990年   35篇
  1989年   35篇
  1988年   27篇
  1987年   26篇
  1986年   19篇
  1985年   22篇
  1984年   29篇
  1983年   9篇
  1982年   21篇
  1981年   12篇
  1980年   7篇
  1979年   12篇
  1978年   7篇
  1977年   7篇
  1974年   4篇
  1973年   5篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
41.
PbI2/MoS2,as a typical van der Waals(vdW)heterostructure,has attracted intensive attention owing to its remarkable electronic and optoelectronic properties.In this work,the effect of defects on the electronic structures of a PbI2/MoS2 heterointerface has been systematically investigated.The manner in which the defects modulate the band structure of PbI2/MoS2,including the band gap,band edge,band alignment,and defect energy-level density within the band gap is discussed herein.It is shown that sulfur defects tune the band gaps,iodine defects shift the positions of the band edge and Fermi level,and lead defects realize the conversions between the straddling-gap band alignment and valence-band-aligned gap,thus enhancing the light-absorption ability of the material.  相似文献   
42.
Lithium garnets are promising solid-state electrolytes for next-generation lithium-ion batteries. These materials have high ionic conductivity, a wide electrochemical window and stability with Li metal. However, lithium garnets have a maximum limit of seven lithium atoms per formula unit (e.g., La3Zr2Li7O12), before the system transitions from a cubic to a tetragonal phase with poor ionic mobility. This arises from full occupation of the Li sites. Hence, the most conductive lithium garnets have Li between 6–6.55 Li per formula unit, which maintains the cubic symmetry and the disordered Li sub-lattice. The tetragonal phase, however, forms the highly conducting cubic phase at higher temperatures, thought to arise from increased cell volume and entropic stabilisation permitting Li disorder. However, little work has been undertaken in understanding the controlling factors of this phase transition, which could enable enhanced dopant strategies to maintain room temperature cubic garnet at higher Li contents. Here, a series of nine tetragonal garnets were synthesised and analysed by variable temperature XRD to understand the dependence of site substitution on the phase transition temperature. Interestingly the octahedral site cation radius was identified as the key parameter for the transition temperature with larger or smaller dopants altering the transition temperature noticeably. A site substitution was, however, found to make little difference irrespective of significant changes to cell volume.  相似文献   
43.
Arylpyrrolyldiketone boron complexes as anion‐responsive π‐electronic molecules were synthesized by Claisen condensations of acetylpyrrole and corresponding aryl esters. The synthesized π‐electronic molecules exhibited anion‐binding behavior with various binding modes including pyrrole‐inverted and non‐inverted [1+1]‐type anion complexes as well as [2+1]‐type complexes owing to the presence of only a single pyrrole ring. Furthermore, solid‐state ion‐pairing assemblies, comprising receptor–anion complexes and countercations, were constructed based on fairly planar [2+1]‐type complexes.  相似文献   
44.
45.
Polycyclic aromatic azomethine ylides (PAMYs) are powerful building blocks in the bottom-up synthesis of internally nitrogen-containing polycyclic aromatic hydrocarbons (N-PAHs) through 1,3-cycloaddition reactions. In this work, the cycloaddition reaction of PAMYs to asymmetric ortho-quinones is presented, which, in contrast to the addition to symmetric para-quinones, facilitates subsequent condensation reactions and allows the synthesis of three helical N-PAHs with ullazine-quinoxaline ( UQ - 1 – 3 ) backbones. UQ - 1 and UQ - 2 possess two helical centers; however, single-crystal X-ray analysis together with the computational modeling of UQ - 3 elucidate the formation of only the thermodynamically most stable geometry with four helical centers in a (P,P,M,M) configuration. For the series UQ - 1 – 3 , the number of redox steps is directly correlated with the number of ullazine or quinoxaline units incorporated into the targeted molecular backbones. A detailed investigation of the spectroscopic and magnetic properties of the radical cation and anion as well as the dication and dianion species by in situ EPR/UV/Vis-NIR spectroelectrochemistry is provided. The excellent optical and redox properties combined with helical geometries render them possibly applicable as chiral emitter or ambipolar charge transport material in organic electronics.  相似文献   
46.
In the research field of single-molecule magnets (SMMs), lanthanoid–lanthanoid interactions, so-called f–f interactions, are known to affect the SMM properties, although their magnitudes are small. In this article, an SMM with very weak f–f interactions is reported, and the effects of the interactions on the SMM properties are discussed. X-ray structural analysis of the DyIII-CdII-phthalocyaninato sextuple-decker complex (Dy2Cd3) reveals that the intramolecular Dy−Dy length in Dy2Cd3 is more than 13 Å, which is longer than the intermolecular Dy−Dy length. Even though the two DyIII ions are far apart, intermolecular ferromagnetic dipole–dipole interactions are observed in Dy2Cd3. From detailed analysis of ac magnetic susceptibilities, quantum tunneling of the magnetization (QTM) in Dy2Cd3 is partially suppressed owing to the existence of very weak Dy−Dy interactions. Our results show that even very weak Dy−Dy interactions act as a dipolar bias, suppressing QTM.  相似文献   
47.
The design of electrode materials with rational core/shell structures is promising for improving the electrochemical properties of supercapacitors. Hence, hierarchical FeCo2S4@FeNi2S4 core/shell nanostructures on Ni foam were fabricated by a simple hydrothermal method. Owing to their structure and synergistic effect, they deliver an excellent specific capacitance of 2393 F g−1 at 1 A g−1 and long cycle lifespan as positive electrode materials. An asymmetric supercapacitor device with FeCo2S4@FeNi2S4 as positive electrode and graphene as negative electrode exhibited a specific capacitance of 133.2 F g−1 at 1 A g−1 and a high energy density of 47.37 W h kg−1 at a power density of 800 W kg−1. Moreover, the device showed remarkable cycling stability with 87.0 % specific-capacitance retention after 5000 cycles at 2 A g−1. These results demonstrate that the hierarchical FeCo2S4@FeNi2S4 core/shell structures have great potential in the field of electrochemical energy storage.  相似文献   
48.
ABSTRACT

The compound Ca3Co2O6 undergoes a transition into a spin-density wave (SDW) state near 24?K. Below ~10?K, this unstable SDW state coexists with a nearly- degenerate commensurate antiferromagnetic state as well as short-range magnetic order. Clear signatures of this strong magnetic disorder have been observed in the response of entropy to changing magnetic field and temperature. We performed a calorimetry study of Ca3Co2O6 and Ca3Co1.9Zn0.1O6 in order to compare their entropic responses at low temperature. Our results for Ca3Co2O6 reveal that ΔS(T, H)?≡?S(T, H)?S(T, H?=?0) increases as either temperature or magnetic field increase. In contrast, ΔS data for Ca3Co1.9Zn0.1O6 were relatively unresponsive to changes in temperature or field, suggesting that Zn substitution may reduce the low-temperature magnetic disorder observed in Ca3Co2O6. These results are discussed within the context of two cases (Ca3Co2O6 under applied pressure and Ca2.75R0.25Co2O6 (R?=?Dy, Lu)) in which a single magnetic ground state is stabilised.  相似文献   
49.
50.
Versatile graphdiyne (GDY) substrate has been modified by numerous transition metals and resulting composites showed excellent photo/electro-catalytic performance. However, GDY materials modified by actinides that are stockpiled waste product due to large-scale use in nuclear industry, are particularly scarce and remains great challenge. To deeply understand the structural properties, GDY complexating actinyl (AnmO2)n+ (An = U, Np, Pu; m = VI, V) species with its atomistic pore was investigated by relativistic density functional theory (DFT). The GDY pore was found suitable to hold actinyl species, by forming organometallic AnC dative bonds. This chemical coupling interaction was further confirmed by quantum theory of atoms-in-molecule and electronic structure calculations. The GDY-uranyl(V), for instance, shows a π(UC) bonding HOMO, which is anticipated to improve electron transfer between ligand and metal. Orbital structures and compositions of complexes suggest their implication towards catalysis, which were further corroborated by calculations on redox potentials of GDY-actinyl complexes. Hence, our results show the potential applications of GDY complexating actinyl species towards novel catalytic surfaces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号